Parametric Distance Metric Learning with Label Information

نویسندگان

  • Zhihua Zhang
  • James T. Kwok
  • Dit-Yan Yeung
چکیده

Distance-based methods in pattern recognition and machine learning have to rely on a similarity or dissimilarity measure between patterns in the input space. For many applications, Euclidean distance in the input space is not a good choice and hence more complicated distance metrics have to be used. In this paper, we propose a parametric method for metric learning based on class label information. We first define a dissimilarity measure that can be proved to be metric. It has the favorable property that between-class dissimilarity is always larger than within-class dissimilarity. We then perform parametric learning to find a regression mapping from the input space to a feature space, such that the dissimilarity between patterns in the input space is approximated by the Euclidean distance between points in the feature space. Parametric learning is performed using the iterative majorization algorithm. Experimental results on realworld benchmark data sets show that this approach is promising.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیک‌های یادگیری معیار فاصله

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...

متن کامل

Relaxational metric adaptation and its application to semi-supervised clustering and content-based image retrieval

The performance of many supervised and unsupervised learning algorithms is very sensitive to the choice of an appropriate distance metric. Previous work in metric learning and adaptation has mostly been focused on classification tasks by making use of class label information. In standard clustering tasks, however, class label information is not available. In order to adapt the metric to improve...

متن کامل

Robust Distance Metric Learning in the Presence of Label Noise

Many distance learning algorithms have been developed in recent years. However, few of them consider the problem when the class labels of training data are noisy, and this may lead to serious performance deterioration. In this paper, we present a robust distance learning method in the presence of label noise, by extending a previous non-parametric discriminative distance learning algorithm, i.e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003